МегаПредмет

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса - ваш вокал


Игровые автоматы с быстрым выводом


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший "Салат из свеклы с чесноком"


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека


Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Расчет комплексного входного сопротивления цепи





КУРСОВАЯ РАБОТА

 

по дисциплине «Электротехника и электроника»

 

по теме

«Расчет линейных электрических цепей с синусоидальным источником ЭДС с использованием символического метода»

 

 

Вариант №

 

Выполнил: студент группы РК-233

Иванов И.И.

 

 

Проверил: ассистент кафедры ТиОЭ

Радченко А.В.

 

 

Омск 2016

Техническое задание к курсовой работе

В электрической цепи (рис. 1), содержащей один источник электрической энергии напряжением , выполнить следующие действия:

1. Определить комплексное входное сопротивление цепи.

2. Найти действующие и мгновенные значения токов во всех ветвях схемы.

3. Рассчитать действующие значения падений напряжений на всех элементах цепи.

4. Составить баланс мощностей.

5. Провести проверку расчетов по I и II законам Кирхгофа.

6. Построить топографическую векторную диаграмму токов и напряжений.

При решении поставленных задач использовать символический метод расчета.

Рис. 1. Схема электрической цепи

Параметры элементов электрической цепи заданы в таблице 1.

Таблица 1

Вариант Номер схемы U j f r1 r2 r3 L1 L2 L3 C1 C2
В град Гц Ом мГн мкФ

 

ОГЛАВЛЕНИЕ

 

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. РАСЧЕТНАЯ ЧАСТЬ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1. Расчет комплексного входного сопротивления цепи . . . . . . . . .
2.2. Расчет действующих и мгновенных значений токов во всех ветвях цепи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.3. Расчет действующих значений падений напряжений на всех элементах цепи. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.4. Составление баланса мощностей . . . . . . . . . . . . . . . . . . . . . . . . .
2.5. Проверка расчетов по I и II законам Кирхгофа . . . . . . . . . . . . . .
2.6. Построение топографической векторной диаграммы токов и напряжений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ЗАКЛЮЧЕНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Список использованной литературы. . . . . . . . . . . . . . . . . . . . . . . . . .

 

 

ВВЕДЕНИЕ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

 

Сущность символического метода расчета цепей синусоидального тока состоит в том, что для упрощения расчета переходят от решения уравнений для мгновенных значений токов и напряжений, являющихся интегро-дифференциальными уравнениями, к алгебраическим уравнениям в комплексной форме. При таких условиях расчет цепи удобнее вести для комплексных действующих величин синусоидальных токов и напряжений.

В данной курсовой работе для определения токов и напряжений каждого элемента схемы, содержащей только один источник электрической энергии, следует использовать метод эквивалентных преобразований, поскольку известны сопротивления всех элементов цепи и ЭДС источника.

Для решения такой задачи отдельные участки электрической цепи с последовательно или параллельно соединенными элементами заменяют одним эквивалентным комплексным сопротивлением, как показано на рисунке 2. Электрическую схему упрощают постепенным преобразованием отдельных участков и приводят к простейшей цепи, содержащей источник электрической энергии и эквивалентный пассивный элемент (рис. 3), включенный последовательно [1].



 

РАСЧЕТНАЯ ЧАСТЬ

Расчет комплексного входного сопротивления цепи

Вычисляем реактивные сопротивления элементов схемы:

17,59 Ом;

22,12 Ом;

12,57 Ом;

18,09 Ом;

15,79 Ом.

Разбиваем схему на три участка по числу токов в ветвях (рис. 2) и рассчитываем комплексные сопротивления каждого участка (ветви).

Рис. 2. Схема замещения заданной цепи с эквивалентными комплексными сопротивлениями

 

Комплексные сопротивления участков цепи:

Ом;

= 44,81e -j23,8º Ом;

Ом;

= 6,33e j90º Ом;

Ом;

= 27,98e j26,7º Ом.

Рассчитываем эквивалентное комплексное сопротивление параллельных ветвей и преобразовываем схему в упрощенный вид, как показано на рис. 3.

Рис. 3. Схема замещения заданной цепи с эквивалентным преобразованием параллельных ветвей

 

Ом;

Ом.

Комплексное входное сопротивление цепи:

ZΣ =Z1 + Z23 = 41 – j18,09 + 1,02 + j5,56 = 42,02 – j12,53 Ом.

= 43,85ej16,6° Ом.





©2015 www.megapredmet.ru Все права принадлежат авторам размещенных материалов.