ПОЗНАВАТЕЛЬНОЕ Сила воли ведет к действию, а позитивные действия формируют позитивное отношение Как определить диапазон голоса - ваш вокал
Игровые автоматы с быстрым выводом Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими Целительная привычка Как самому избавиться от обидчивости Противоречивые взгляды на качества, присущие мужчинам Тренинг уверенности в себе Вкуснейший "Салат из свеклы с чесноком" Натюрморт и его изобразительные возможности Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д. Как научиться брать на себя ответственность Зачем нужны границы в отношениях с детьми? Световозвращающие элементы на детской одежде Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия Как слышать голос Бога Классификация ожирения по ИМТ (ВОЗ) Глава 3. Завет мужчины с женщиной
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д. Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. | Классификация транспорта веществ и его значение А. Транспорт через клеточную мембрану обеспечивает: 1) поступление в клетку различных веществ, необходимых для синтеза клеточных структур и выработки энергии: 2) все перемещения частиц между клеткой и интерстицием, сосудами и интерстицием; 3) регуляцию физико-химических констант внутренней среды клетки; 4) создание электрических зарядов клеток, возникновение и распространение возбуждения; 5) выделение клетками продуктов ее обмена и биологически активных веществ: нейрогормонов, нейромедиаторов. Б. Транспорт веществ через клеточную мембрану делят на пассивный (без затрат энергии) и активный (с затратой энергии). Считают, что движущей силой пассивного перемещения веществ являются концентрационный (химический) и электрический градиенты. Согласно концентрационному градиенту, частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Согласно электрическому градиенту, положительно заряженные частицы стремятся перейти в область с отрицательным электрическим зарядом, отрицательно заряженные частицы - в противоположном направлении. Направления электрического и концентрационного градиентов могут совпадать и не совпадать. Следует, однако, заметить, что термин «пассивный транспорт» не соответствует действительности, так как электрический и концентрационный градиенты в живой клетке создаются активно, с затратой энергии. Только обмен веществ между организмом и внешней средой может происходить частично без затрат энергии, если имеется концентрационный градиент, - это диффузия газов из легких в кровь или выход их из крови и всасывание питательных веществ в кровь из желудочно-кишечного тракта, если их концентрация в кишечнике больше, чем в крови. Термин «пассивный транспорт» необходимо исключить, так как подобного механизма в животном организме не существует, все виды транспортавеществ ворганизме осуществляются активно, с затратой энергии. В одних случаях энергия затрачивается непосредственно на транспорт какой-то частицы, например иона Na+, с помощью белковой молекулы, называемой насосом (помпа, см. раздел 2.6.2). Это первично-активный транспорт. В данном случае создается концентрационный (химический) градиент - запас потенциальной энергии. В других случаях энергия на перенос частиц затрачивается опосредованно: например, перенос молекул глюкозы с помощью натрия. Это вторично активный транспорт, энергия расходуется на перенос только натрия (см. раздел 2.6.3). Считают, что движение воды, согласно закону осмоса, осуществляется пассивно, без затрат энергии: вода движется в область с высокой концентрацией частиц (с высокой осмолярностью). Однако если осмотическое давление сравняется по обе стороны мембраны, то одностороннее движение воды прекратится. Движение воды, в результате которого была израсходована потенциальная энергия в виде концентрационного градиента, нельзя назвать пассивным, без затрат энергии. - это вторично активный транспорт. Однаковсе частицы, в том числе ионы,не могут перемещаться сами, у них нет собственного механизма передвижения (транспортного средства). Транспортируемые частицы являются пассивным элементом во всех случаях без исключения, их движение обеспечивает какой-то механизм, находящийся вне их (внешняя относительно частицы сила), например концентрационный градиент, ионная помпа, передвигающая ион. Активно в организме могут передвигаться только некоторые клетки, например: лейкоциты, тучные клетки. В частности, амебоидная подвижность нейтрофилов обусловлена образованием двигательных псевдоподий, при этом энергия расходуется на деятельность сократительного аппарата - актомиозиновых структур. Таким образом, расход энергии в организме на транспорт веществ в одних случаях осуществляется непосредственно, в других опосредованно. Если энергия расходуется непосредственно на перенос частиц, транспорт следует называтьпервично активным. Если же на транспорт частиц расходуется ранее запасенная энергия, например концентрационный градиент, то такой транспорт следует называтьвторично активным. В обоих случаях транспорт веществ является активным (с затратой энергии), поэтому вполне обоснованно использовать термины«первичный транспорт» и «вторичный транспорт» веществ. Первичный транспорт Первичный транспорт - это такой транспорт, когда энергия расходуется непосредственно на перенос частиц. Он включает, во-первых, перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, во-вторых, эндоцитоз, экзоцитоз и трансцитоз (микровезикулярный транспорт). А. Транспорт веществ с помощью насосов (помп). Насосы представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Непосредственным источником энергии являются АТФ. Достаточно хорошо изучены Na/K.-, Са- и Н- насосы. Есть основание предполагать наличие и Cl-насоса, о чем свидетельствуют определенные факты. Рассмотрим основные характеристики насосов. 1. Специфичность насосов заключается в том, что они обычно переносят какой-то определенный ион или 2 иона. Например, Na/K-насос (объединенный насос для Na+ и К+) не способен переносить ион лития, хотя по своим свойствам последний очень близок к натрию. 2. Характеристика отдельных насосов.Натрий-калиевый насос (Na/K-АТФаза) - это интегральный белок клеточной мембраны, обладающий, как и все другие насосы, свойствами фермента, т.е. сам переносчик обеспечивает расщеплениеАТФ и освобождение энергии, которую он же сам использует. Этот насос изучен наиболее хорошо, он имеется в мембранах всех клеток и создает характерный признак живого - градиент концентрации Na+и К+внутри и вне клетки, что обеспечивает формирование мембранного потенциала и вторичный транспорт веществ. Главными активаторами насоса являются гормоны (альдостерон, тироксин), ингибирует насос недостаток энергии (кислородное голодание), его специфическими блокаторами служат строфантины, особенно уабаин. Работа натриевого насоса после удаления К+из среды сильно нарушается.Кальциевый насос локализуется в эндоплазматическом ретикулуме, он обеспечивает транспорт ионов Са2+. Насос строго контролирует содержание ионов Са2+ в клетке, поскольку изменение уровня Са2+ нарушает ее функцию. Насос переносит ионы Са2+ либо во внеклеточную среду, либо в цистерны ретикулума и митохондрии (внутриклеточное депо ионов Са2+).Протонный насос работает в митохондриях нейрона,хлорный насос, подобно всем другим помпам, главную роль, очевидно, играет в процессах торможения ЦНС (см. раздел 4.8). 3. Постоянная работа насосов необходима для поддержания концентрационных градиентов ионов, связанного с ними электрического заряда клетки и движения воды и незаряженных частиц в клетку и из клетки вторично активно согласно законам диффузии и осмоса. Совокупность этих процессов обеспечивает жизнедеятельность нейрона, как и любой другой клетки. В результате разной проницаемости клеточной мембраны для различных ионов и постоянной работы ионных помп концентрация ионов внутри и снаружи клетки неодинакова. Ионы являются заряженными частицами, поэтому существует электрический заряд нейрона. Почти во всех изученных клетках внутреннее содержимое их заряжено отрицательно по отношению к внешней среде, т.е. внутри клетки преобладают отрицательные ионы, а снаружи - положительные. Ионы К'1" находятся преимущественно в клетке, а ионы Na+ и Сl- - во внеклеточной жидкости. Внутри клетки расположены также крупномолекулярные (в основном белкового происхождения) анионы. Na/K-насос транспортирует не только ионы Na+ и K+, но и другие молекулы, например глюкозу, аминокислоты (см. раздел 2.6.3). Более трети энергии АТФ, потребляемой клеткой в состоянии покоя, расходуется на перенос только ионов Na+ и K+. Это обеспечивает сохранение клеточного объема (осморегуляция), поддержание электрической активности в нервных клетках, транспорт других веществ. Таким образом, первичный транспорт ионов играет исключительно важную роль в жизнедеятельности клеток. 4. Механизм работы ионных насосов заключается в следующем. Na/K-насос - молекула интегрального белка, пронизывающая всю толщу клеточной мембраны, переносит за один цикл 3 иона Na+ из клетки и 2 иона K+ в клетку (антипорт - противотранспорт). Это осуществляется в результате конформации молекулы белка в форму E1 или E2. Молекула имеет участок, который связывает либо ион Na+, либо ион K+, - это активный участок. При конформации E1 белковая молекула активной своей частью обращена внутрь клетки и обладает сродством к иону Na+, который присоединяется к белку, в результате чего активируется его АТФаза, обеспечивающая гидролиз АТФ и освобождение энергии. В результате освобождения энергии изменяется конформация молекулы белка: она превращается в форму E2, в результате чего активный ее участок уже обращен наружу клеточной мембраны. Теперь белок теряет сродство к иону Na+, последний отщепляется от него, а белок-помпа приобретает сродство к иону K+ и соединяется с ним. Это ведет снова к изменению конформации переносчика: форма E2 переходит в форму E1, активный участок белка снова обращен внутрь клетки. При этом он теряет сродство к иону K+ и последний отщепляется, а белок приобретает снова сродство к иону Na+ - цикл повторяется. Насос является электрогенным, поскольку за один цикл выводится из клетки 3 иона Na+ а возвращаются в клетку 2 иона K+. Энергия расходуется только на перенос ионов Na+. На обеспечение одного цикла работы Na/K - помпы расходуется одна молекула АТФ. Подобным образом работают Са-АТФазы эндоплазматического ретикулума и клеточной мембраны, с той лишь разницей, что переносятся только ионы Сa2+ и в одном направлении - из гиалоплазмы в эндоплазматический ретикулум, а также наружу клетки. Кальциевый насос (Са-АТФаза) - молекула интегрального белка, также имеет активный участок, связывающий один или два иона Сa2+ и может быть в двух конформациях - E1 и E2. В конформации E1 активный участок молекулы белка обращен в гиалоплазму, обладает сродством к иону Сa2+ и соединяется с ним. В результате этого переходит в конформацию E2, когда активный участок молекулы белка обращен внутрь эндоплазматического ретикулума или наружу клетки. При этом уменьшается сродство белка к иону Сa2+, последний отщепляется от него. В присутствии иона Mg2+ освобождается энергия АТФ, за счет которой молекула белка Са-АТФазы вновь переходит в конформацию E1; цикл повторяется. |